Crystal and molecular structures of hexameric lithium dimethylnaphthylsilanolate, [LiOSiNpMe₂]₆ *

T.A. Bazhenova, R.M. Lobkovskaya, R.P. Shibaeva, A.E. Shilov^{*}, and A.K. Shilova U.S.S.R. Academy of Sciences Institute of Chemical Physics, 142 432 Chernogolovka (U.S.S.R.) (Received February 5th, 1987)

Abstract

In the solid lithium dimethyl(naphthylsilanolate) exists as hexamer [LiOSiNp- Me_2]₆ containing a puckered Li₆ ring with bridging O atoms bound to tetrahedral silicon centres.

Introduction

During a study of the reaction of α -naphthyllithium with iron trichloride in ether solution with the objective of isolating iron complexes which would react with dinitrogen [1-3] we isolated from the products a compound which turned out, unexpectedly, to be lithium dimethylnaphthylsilanolate [LiOSiNpMe₂]. The only source of silicon in the system was the silicone grease (supplied by the Rhônc Poulenc Co.) used on the glass joints. The grease contains the polymer [Me₂SiO]_n, which is readily soluble in ether. Presumably the grease was partially dissolved in ether and then treated with α -naphthyllithium to form I:

 $[Me_2SiO]_n + nLiNp \rightarrow n[LiOSiMe_2Np]$ (I)

This type of reaction was used to prepare lithium trimethylsilanolate from methyllithium [4], and compounds of the general formula $[LiOSiR_3]$ are known for R = Me, Ph, PhCH₂ [5]. As described below, an X-ray study of single crystals of I showed it to be a hexamer, in which there are LiLi bonds, a feature previously unknown for organolithium compounds containing Li–O bonds.

^{*} Dedicated to Professor Luigi Sacconi in recognition of his important contributions to organometallic chemistry.

Experimental

The ethereal product mixture was evaporated and the residue extracted with pentane. Single crystals of I formed in the pentane solution on long standing at

Atom	x	у	Z	B
Si	4504(2)	4023(1)	2406(2)	3.9
0	4855(3)	4355(2)	3589(3)	3.5
Li	5087(11)	5167(5)	3368(12)	4.1
C(1)	3159(5)	3664(3)	2499(6)	4.3
C(2)	2420(7)	3804(3)	1710(7)	5.9
C(3)	1384(7)	3519(4)	1788(8)	6.8
C(4)	1095(7)	3177(4)	2644(8)	7.0
C(5)	1727(6)	3011(7)	3461(7)	5.3
C(6)	1409(7)	2630(4)	4388(8)	6.7
C(7)	2050(8)	2502(4)	5143(8)	7.7
C(8)	3096(8)	2701(4)	5112(8)	7.3
C(9)	3447(6)	3091(3)	4223(6)	4.9
C(10)	2793(6)	3258(3)	3389(6)	4.6
C(11)	5287(7)	3471(4)	2022(7)	7.2
C(12)	4603(7)	4580(4)	1218(7)	6.6
Si'	3875(2)	6187(1)	3340(2)	4.1
0′	4414(4)	5727(2)	4044(4)	4.2
Li'	4307(10)	4180(5)	5076(10)	4.2
C(1')	2537(7)	5857(3)	2942(6)	3.5
C(2')	2255(7)	5267(3)	3144(6)	4.1
C(3')	1283(7)	4979(4)	2835(7)	4.9
C(4')	610(7)	5266(4)	2295(8)	5.2
C(5')	860(7)	5862(4)	2060(7)	4.7
C(6')	162(7)	6172(4)	1520(8)	6.3
C(7')	387(8)	6731(4)	1275(9)	6.3
C(8')	1321(9)	7038(4)	1621(9)	6.4
C(9')	2034(7)	6754(4)	2150(7)	4.4
C(10')	1829(7)	6158(3)	2377(7)	3.8
C(11')	4532(8)	6398(4)	1944(9)	6.8
C(12')	3888(9)	6843(5)	4241(9)	6.6
Si"	2565(2)	4404(1)	6704(2)	3.9
0″	3578(3)	4638(2)	5979(4)	3.7
Li″	3905(11)	5437(6)	5523(11)	4.6
C(1")	2297(6)	5010(3)	7681(7)	4.3
C(2″)	2396(6)	4956(3)	8858(7)	5.4
C(3'')	2255(7)	5401(4)	9652(8)	6.2
C(4″)	2032(7)	5898(4)	9265(8)	6.2
C(5″)	1890(7)	5994(4)	8073(7)	5.5
C(6″)	1618(7)	6509(4)	7663(8)	6.8
C(7″)	1506(8)	6603(4)	6535(9)	7.2
C(8″)	1604(7)	6170(4)	5725(8)	6.6
C(9″)	1873(6)	5652(3)	6092(7)	5.3
C(10″)	2039(6)	5545(3)	7289(6)	4.2
C(11″)	1455(7)	4154(4)	5770(8)	5.8
C(12″)	2743(7)	3778(4)	7633(8)	6.2

Coordinates (×10⁴) of Si, O, Li, C atoms, with their thermal parameters, $(B^{a}, Å^{2})$

^a Values of B_{eq} are shown for Si and O atoms, and those of B_{iso} for C, and Li atoms.

Table 1

room temperature. In addition to I, the solution contained residual naphthyllithium and naphthyl derivative of iron formed from $FeCl_3$ [3].

No attempts were made to optimize the synthetic procedure for I or to find out whether the iron compounds had any catalytic effect.

For the diffraction study a single crystal of I was sealed in a glass capillary ($\emptyset 0.07 \text{ mm}$) under argon. The cell dimensions and intensities of 1865 independent reflections with $I \ge 2\sigma(I)$ were measured with a 'Syntex PĪ' four-circle automatic diffractometer (λ (Mo- K_{α})), graphite monochromator, $\theta/2\theta$ scan ($\sin \theta/\lambda$)_{max} = 0.604. No absorption correction was made.

Table 2

Coordinates	$(\times 10^{3})$) of h	ydrogen	atoms	and (С-Н	bond	lengths	(r, Å	1)
-------------	-------------------	--------	---------	-------	-------	-----	------	---------	-------	----

Atom ^a	x	у	Z	r (Å)	
H(2)	277(5)	404(3)	111(6)	0.96(7)	
H(3)	115(5)	383(3)	167(6)	0.85(7)	
H(4)	31(5)	294(3)	279(6)	1.12(7)	
H(6)	52(5)	247(3)	411(6)	1.23(7)	
H(7)	186(5)	232(3)	595(6)	1.04(7)	
H(8)	364(5)	255(3)	559(6)	1.02(8)	
H(9)	432(5)	319(3)	418(6)	1.16(7)	
H(11)	525(6)	316(3)	253(6)	0.93(7)	
H(11 ₁)	509(6)	338(3)	120(6)	1.00(7)	
$H(11_2)$	598(6)	368(3)	195(6)	0.98(7)	
H(12)	413(6)	484(3)	133(6)	0.95(8)	
$H(12_1)$	457(5)	428(3)	62(6)	0.98(7)	
$H(12_2)$	543(6)	466(3)	109(6)	0.99(7)	
H(2')	274(5)	503(3)	363(6)	1.08(7)	
H(3')	119(5)	455(3)	304(4)	1.01(7)	
H(4')	- 7(6)	503(3)	209(6)	1.03(7)	
H(6')	- 22(5)	583(3)	126(6)	0.92(6)	
H(7')	-13(6)	697(3)	165(6)	1.06(8)	
H(8')	157(5)	743(3)	153(6)	0.93(7)	
H(9')	270(5)	697(3)	247(6)	1.01(7)	
H(11')	468(6)	604(3)	148(6)	1.05(7)	
$H(11_{1}')$	413(5)	666(3)	137(6)	1.11(8)	
$H(11'_{2})$	513(5)	660(3)	230(6)	0.95(7)	
H(12')	355(5)	677(3)	502(6)	1.01(7)	
$H(12_{1}')$	466(6)	697(3)	440(6)	1.04(8)	
$H(12'_{2})$	359(6)	710(3)	389(6)	0.87(8)	
H(2″)	256(5)	460(3)	909(6)	0.94(7)	
H(3")	234(5)	524(3)	1058(6)	1.04(7)	
H(4″)	211(5)	631(3)	988(6)	1.19(7)	
H(6″)	164(5)	691(3)	830(6)	1.18(7)	
H(7″)	113(5)	697(3)	615(6)	1.16(8)	
H(8″)	125(6)	614(3)	499(6)	0.97(7)	
H(9″)	188(5)	526(3)	565(6)	1.06(7)	
H(11")	93(5)	439(3)	583(6)	0.97(8)	
H(111'')	146(5)	376(3)	569(6)	0.92(7)	
H(11 ["] ₂)	158(6)	423(3)	505(6)	0.87(7)	
H(12″)	315(6)	386(3)	829(6)	0.93(7)	
H(12")	286(6)	350(3)	718(6)	0.87(7)	
H(12 ["] ₂)	194(6)	364(3)	802(6)	1.17(7)	

^a The numbering of hydrogen atoms corresponds to that of the carbon atoms to which they are attached.

Fig. 1. The structure of the $Li(NpSiMe_2O)_6$ complex projected along the c direction.

The structure was solved by the direct method and refined by a least-squares procedure in full matrix anisotropic (for Si and O atoms) and isotropic (for C and Li atoms) approximations. Hydrogen atoms were located from differential synthe-

Fig. 2. Li_6 hexamer with surrounding O(–Si $\!$) atoms. The Li_6 hexamer is shown in the lower part of the figure.

Distance	r (Å)	
O-Li	1.89(1)	
O-Li'	1.90(1)	
O-Li ["]	1.95(1)	
O'-Li	1.89(1)	
O'-Li″	1.93(1)	
$O'-Li'_i$	1.98(1)	
0″-Li′	1.89(1)	
O″-Li″	1.92(1)	
$O''-Li_i$	1.93(1)	
Li · · · Li'	3.09(2)	
Li · · · Li"	3.08(2)	
$Li' \cdots Li''$	3.12(2)	
Li · · · Li'	2.42(2)	
Li · · · Li''	2.48(2)	
$\operatorname{Li}'\cdots\operatorname{Li}''_i$	2.52(2)	

Table 3 Interatomic O-Li and Li \cdots Li distances in complex I^{*a*}

^a Symmetry matrix: i (1 - x, 1 - y, 1 - z).

ses, and only their position parameters were refined. Calculations were performed with the Roentgen-75 program [6]. The final R index was 0.067. Coordinates of non-hydrogen atoms and their temperature factors are shown in Table 1, and the coordinates of hydrogen atoms and C-H bond lengths in Table 2.

Results and discussion

The crystals of I were found to be monoclinic, a 13.45(2), b 23.41(7), c 11.59(2) Å, γ 99.5(2)°, V 3597.5 Å³, M = 1249.56, d_{calc} 1.15 g/cm³, Z = 2, space group $P2_1/n$. The structure projection along c direction is shown in Fig. 1. Complex I could conceivably be regarded as a lithium salt of the anion [NpSiMe₂O]⁻, but its structure corresponds to that of known organolithium compounds containing covalent Li-X bonds and forming polymers by Li-Li bonding [7,8]. As shown in Fig. 2, the structure of I consists of a hexameric Li₆ ring stabilized by the \geq OSiMe₂Np bridges. The structure of I may be also regarded as a distorted octahedron formed by six lithium atoms, with two opposite facets broadened compared with all the others bridged by oxygen.

The mean LiLi bond length in the puckered Li_6 rings is 2.47 Å, indicating strong LiLi bonding (the Li-Li bond length in the Li₂ molecule is 2.67 Å). The Li-O and Li-Li bond lengths are shown in Table 3. Si atom in the anionic part of I has a tetrahedral environment with normal values of Si-O and Si-C bond lengths (Table 4) [9]. The structure of I and the Li-Li bond lengths are similar to those for other known hexameric organolithium compounds (see Table 5). Of the known Li₆ species [10-13] I contains the most electronegative atom (oxygen) bound to lithium. Like the nitrogen-containing compounds I contains no electron deficient bridges

·							
<u>r</u>	I	II	III	ω	I	II	III
Si-O	1.604(4)	1.616(6)	1.615(5)	0-Si-C(1)	110.7(3)	110.8(4)	108.2(3)
Si-C(1)	1.864(8)	1.891(9)	1.897(8)	O-Si-C(11)	112.8(3)	111.7(4)	113.0(4)
Si-C(11)	1.85(1)	1.87(1)	1.86(1)	O-Si-C(12)	107.8(4)	108.9(5)	110.7(4)
Si-C(12)	1.89(1)	1.86(1)	1.87(1)	C(1) - Si - C(11)	108.8(4)	105.7(4)	109.9(4)
C(1)-C(2)	1.43(1)	1.39(1)	1.38(1)	C(1) - Si - C(12)	107.7(4)	110.5(5)	108.0(4)
C(1)-C(10)	1.43(1)	1.43(1)	1.43(1)	C(11)-Si-C(12)	108.9(4)	109.3(5)	106.9(4)
C(2)-C(3)	1.44(1)	1.41(1)	1.43(1)	Si-C(1)-C(2)	121.3(5)	116.5(7)	119.3(6)
C(3)-C(4)	1.29(1)	1.37(1)	1.33(1)	Si-C(1)-C(10)	122.6(6)	125.2(6)	124.7(6)
C(4)-C(5)	1.37(1)	1.40(1)	1.42(1)	C(2)-C(1)-C(10)	116.0(7)	118.1(8)	115.9(7)
C(5)-C(6)	1.42(1)	1.43(1)	1.40(1)	C(1)-C(2)-C(3)	120.6(7)	120.4(8)	123.0(8)
C(5)-C(10)	1.45(1)	1.42(1)	1.43(1)	C(2)-C(3)-C(4)	120.0(9)	121.3(8)	119.9(8)
C(6)-C(7)	1.30(1)	1.32(1)	1.34(1)	C(3) - C(4) - C(5)	124.7(9)	126.0(8)	121.6(9)
C(7)-C(8)	1.41(1)	1.40(1)	1.40(1)	C(4) - C(5) - C(6)	124.6(8)	121.5(8)	121.9(8)
C(8)-C(9)	1.41(1)	1.40(1)	1.39(1)	C(4)-C(5)-C(10)	117.7(7)	118.8(9)	117.7(8)
C(9)-C(10)	1.41(1)	1.40(1)	1.44(1)	C(6)-C(5)-C(10)	117.8(8)	119.7(8)	120.4(8)
				C(5)-C(6)-C(7)	121.0(9)	122.5(9)	121.7(9)
				C(6)C(7)C(8)	124.9(9)	118.8(9)	120.6(9)
				C(7)-C(8)-C(9)	116.2(9)	120.8(9)	119.7(9)
				C(8)-C(9)-C(10)	121.9(7)	121.4(8)	121.4(8)
				C(1)-C(10)-C(5)	120.6(7)	120.7(8)	121.8(7)
				C(1)-C(10)-C(9)	121.3(7)	122.6(8)	122.0(7)
				C(5)-C(10)-C(9)	118.1(7)	116.7(8)	116.1(7)

Table 4	1
---------	---

Bond lengths (r, Å) and valency angles $(\omega, degree)$ in the anionic part of I

Table 5

Interatomic distances in hexameric organolithium compounds

Compound	Li–Li	Li–X ^a	Ref.
$(LiC_6H_{11})_6$	2.405 2.98	2.184 2.30	10
(LiSiMe ₃) ₆	2.72(2) 3.25(4)	2.68	11,12
${Li(N=CBu_2^t)}_6$	2.35(1)	2.06(1)	13
	3.21(1)		10
${Li[N=C(NMe_2)]}_{6}$	2.445(2)	2.00(1)	13
	3.166(2)		10
(LiOSiNpMe ₂) ₆	2.47(2)	1.92(2) This work	
	3.10(2)		

^a X = C, Si, N, O.

such as present in, e.g., $[LiC_6H_{11}]_6$. Formation of stable six-membered Li₆ rings is evidently a general feature of lithium compounds with covalent Li-X bonds.

References

- 1 T.A. Bazhenova, A.K. Shilova, E. Deschapms, M. Gruselle, G. Leny and B. Tchoubar, J. Organomet. Chem., 222 (1981) C1.
- 2 T.A. Bazhenova, R.M. Lobkovskaya, R.P. Shibaeva, A.K. Shilova, M. Gruselle, G. Leny and E. Deschamps, J. Organomet. Chem., 244 (1983) 375.
- 3 T.A. Bazhenova, I.N. Ivleva, L.M. Kachapina, A.K. Shilova, A.E. Shilov and B. Tchoubar, J. Organomet. Chem., 296 (1985) 95.
- 4 K.A. Andrianov, Metody elementoorganicheskoi khimii: Kremnii. M.: Nauka, 1968, p. 504.
- 5 S.M. Borisov, M.I. Voronkov and E.Ya. Lukevitz, Kremneelementoorganicheskie socdineniya. Proizvodnye neorganogenov. M.: Khimiya, 1966, p. 112-118.
- 6 V.I. Andrianov, Z.Sh. Safina and B.L. Tarnopolskii, Roentgen- 75. Chernogolovka, USSR Academy of Sciences Institute of Chemical Physics, 1975.
- 7 T.L. Brown, Adv. Organomet. Chem., 3 (1965) 365.
- 8 J.P. Olive, Adv. Organomet. Chem., 15 (1977) 235.
- 9 V.E. Shklover and Yu.T. Struchkov, Uspekhi khimii, 49 (1980) 518.
- 10 Y. Yamamoto and G.A. Wilke, Inorg. Chem., 10 (1971) 1129.
- 11 T.F. Schaaf, W. Butler, M.D. Glick and J.P. Oliver, J. Amer. Chem. Soc., 96 (1974) 7593.
- 12 W.H. Ilsley, T.F. Schaaf, M.D. Glick and J.P. Oliver, J. Amer. Chem. Soc., 102 (1980) 3769.
- 13 W. Clegg, R. Snaith, H.M.M. Shearer, K. Wade and G. Whitehead, J. Chem. Soc., Dalton Trans., 7 (1983) 1309.